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When can macroscopic data about a system be used to set parameters in 
a microfoundational simulation? We examine the epistemic viability of 
tweaking parameter values to generate a better fit between the outcome of 
a simulation and the available observational data. We restrict our focus 
to microfoundational simulations—those simulations that attempt to 
replicate the macrobehavior of a target system by modeling interactions 
between microentities. We argue that tweaking can be effective but that 
there are two central risks. First, tweaking risks overfitting the simulation 
to the data and thus compromising predictive accuracy; and second, it 
risks compromising the microfoundationality of the simulation. We 
evaluate standard responses to tweaking and propose strategies to guard 
against these risks. 
 
 
Many computer simulations are intended by their designers to be 

“bottom-up” models of macroscopic phenomena. Examples are found across 
the sciences: 

• The flow of plasmas, modeled by simulating the interactions among 
large numbers of fast-moving particles, 

• the folding of proteins, by simulating the interactions among amino 
acids, 

• the dynamics of ecosystems, by simulating the interactions of 
individual predators and prey, 

• climate change, by simulating interacting volumes of atmosphere, 
ocean, and land, 
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• the fluctuations of stock markets, by simulating the interactions 
among traders, 

• traffic jams, by simulating the movements of cars over road-
segments, 

and so on. 
In general, such simulations start with models of interacting individual 

entities that in the aggregate produce the macroscopic phenomenon of 
interest. (Call these the microfoundational entities.) Then they calculate the 
results of large numbers of interactions over time, observing as macroscopic 
regularities develop. 

In many of these simulations, much is already known about the 
macrophenomena of interest. A traffic modeler may have detailed data about 
the conditions under which traffic jams occur, and the protein folder knows 
the structure of a great number of actual proteins. Thus simulations – like any 
other models – are built iteratively. The modeler does not just write a 
simulation once, set it running, and read off the results. Anyone who has 
written a simulation knows that the initial runs are invariably hopeless. Even 
if we start with a good understanding of the relevant microentities, it takes 
repeated tweaks and refinements for the results of the simulation to begin to 
approximate the macrodata.  

This, however, raises an immediate problem. The aim of a bottom-up 
model is to generate the macrophenomena from models of interacting 
microentities. “Tuning” a model, or tweaking the microparameters whenever 
we get results we do not like, can amount to slapping an ad hoc bandaid on a 
broken model, insulating the model from any empirical risk. If we hope to 
simulate the macrophenoma using micro-interactions in an empirically 
informative way, we put our thumbs on the scale if we smuggle in the 
macrodata whenever we get results we do not like. 

Is it acceptable to use macrodata in setting microparameters, and if so, 
when? This is part of a larger and under-theorized issue: the process of 
simulation model improvement. Here we focus on tweaking in particular, just 
one type of improvement for bottom-up simulation models. 
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In this paper, we argue that some of the most prevalent guidelines are 
overstated, and that iterative tweaking of models is allowable in many 
circumstances. But we also raise other problems for tweaking that have 
largely escaped notice. There are, we argue, two distinct risks involved in the 
use of macrodata to set microparameters. 

One risk is that tweaking compromises the simulation’s predictive 
accuracy. This is tied to traditional problems of model selection and 
validation, problems that become particularly thorny when applied to 
computer simulations. Simulators often worry about “tuning” models to fit 
the data, and often discuss these worries in connection with the procedures for 
“calibrating” and “validating” simulations. Looking at tweaking from the lens 
of statistical inference, it can be understood as a coarse-grained strategy for 
maximum likelihood estimates for parameter values. As explored in the 
model selection literature, complex models with a large number of adjustable 
parameters run a high risk of overfitting the model to the data. So tweaking 
may produce an ad hoc simulation that merely accommodates the data. But it 
need not always fall into this trap. This is true whether we use existing data to 
fit our models or seek new data to do this. 

A second risk is not commonly discussed. This is risk to the simulation’s 
microfoundationality; that is, to whether the simulation succeeds at being 
bottom-up. Even when the use of macrodata in setting microparameters 
improves predictive accuracy, the risk is that this victory may be achieved 
only by covertly smuggling the macrodata into the simulation. If part of the 
aim of certain simulations is to have the macrophenomena emerge bottom-up 
from their microfoundations, this risk provides a different reason for 
suspicion of tweaking. 

We argue, however, that addressing these two risks does not mean 
foreswearing the use of macrodata in tweaking models. We propose strategies 
for addressing each of the risks. Unfortunately, there are tradeoffs among 
these strategies. For instance, overfitting risks may be addressed in part by 
restricting the number of parameters by, for instance, making individual 
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microentities homogeneous. But, as we will see, homogeneity among the 
elements of a simulation increases the risk of smuggling. 

1 Good versus bad tweaking 

It is easy to describe examples in which the use of macrodata to set 
microparameters is illicit. Consider, as a simple case, an agent-based 
simulation of the behavior of a large school of fish. 

1.1 Tuning the herring 

A school of herring may consist of tens of millions of individual fish, 
each reacting to its environment and interacting with its neighbors. As a 
whole, schools exhibit large-scale patterns. For instance, on encountering a 
predator such as a killer whale, a school may split in two, leaving a wide 
berth for the predator, and rejoining once the whale has passed through the 
school. These macroproperties of entire schools, measured using multibeam 
sonar and echosounders (Axelsen et al. 2001; Nottestad et al. 1999), present 
high-quality data of the behaviors of herring schools on encountering 
predators. They show that schools have a number of anti-predation 
maneuvers, including splitting in two, turning sharply in one direction or 
another, creating a vacuole around the predator, and so on. 

Suppose we build a simple agent-based model of herring behavior, 
intending to simulate these macroscopic anti-predation maneuvers. In the first 
iteration of the simulation, we begin with some data we possess about the 
behaviors of individual herring. We observe that individual herring can 
perceive a threat in two ways: they can perceive it directly, or they can 
perceive a disturbance in their environment, such as a threat reaction by other 
herring in their neighborhood. Our information about individual herring also 
indicates that in response to a threat, an individual herring will reverse 
direction and swim away as quickly as possible. So the basic elements of our 
simulation are herring-agents with these behaviors, along with predator-
agents, who swim in straight lines. 
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When we run the simulation, we find a certain kind of behavior predicted 
in the face of a threat. As a predator approaches, each of the herring-agents 
reverses direction, a reversal which cascades through the school. Soon, the 
school is swimming in the opposite direction it had been going. 

This first iteration of a model is plausible enough. Unfortunately, it does 
not match the macroscopic data we have of herring behavior. On 
encountering a threat, the actual data shows that the school does not reverse 
direction, but splits in two. Assigning these simple characteristics to the 
agents, the simulation predicts the wrong macrobehavior for the school. So 
we revise the model. 

In the second iteration, we use the macrodata that the school splits in two 
on encountering a threat to tweak the properties of individual fish. To capture 
the observed macrobehavior, we assign the agents two different personalities. 
We make the 5 million fish in the left half of the school “lefties,” and the 5 
million in the right half “righties.” The lefties are disposed, on perceiving a 
threat, to take a sharp left turn for a while, before returning to their original 
direction. The righties are disposed to turn right. 

When the simulation is run, this tweak works. On encountering the 
predator the school splits in half, just as the macrodata predicted. But this 
tweak is an illicit one. All we really did, by assigning the fish different 
personalities in the right and left halves of the school, was to bake the macro-
outcome into the micro-assumptions. Despite the fact that the simulation 
produces the correct macrophenomenon, it cannot be regarded as a good 
“bottom-up” simulation. 

While this example is an exaggerated one, it is worrisome, because the 
“tweaking” method will be familiar to anyone who has ever written a 
simulation. Simulations invariably begin as highly simplified idealizations, 
with the researcher hypothesizing which microproperties are the crucial ones 
for generating the macrophenomena, and what the appropriate parameter 
settings should be for modeling those microproperties. Only through a 
process of iterative testing and revision – sometimes going through 
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generations of researchers – do the results of simulations ever manage to 
approach the macrophenomena. 

1.2 Overreacting 

Given the perils of tweaking, some theorists adopt strict rules for the use 
of macrodata, or prohibit its use altogether. Quite generally, theorists divide 
the use of macrodata into two categories: the use of macrodata in model 
evaluation is put into the umbrella of model “validation,” and the use of 
macrodata in setting parameters is “calibration.” 

Randall and Wielicki (1997), for instance, take a hard line, insisting that 
parameters can and should “be set once and for all before a model is run” 
(Randall and Wielicki 1997, 405): 

“Good empiricism” is…applied before the model is run. The empirical 
parameters of a model should be measured and then set, on the basis of these 
measurements, before the model is used to make a prediction. The parameters 
should not be adjusted a posteriori to improve the agreement between the 
model predictions and other data. Tuning consists of … adjusting parameters 
after a model is run to improve the agreement between the model results and 
data. Tuning is bad empiricism. Calibration is bad empiricism with a bag over 
its head (404). 

While they admit that in practice scientists are often forced to resort to 
tuning, they claim that this is an inferior strategy; once sufficient 
understanding of the underlying processes is achieved “then there is no 
excuse for continued tuning” (Randall and Wielicki 1997, 404). 

The “hard line” reaction finds its way into the actual practice of 
simulation design. The following, for instance, is a fairly typical description 
of the methods employed for constructing a simulation. Here the model is a 
cellular-automaton simulation of vascularization: 

In total, the model drew upon published independent experimental data 
obtained from in vitro and in vivo experimental studies to govern 48 free 
parameters which represented different aspects of the remodeling process, 
including cell proliferation rates and cell migration rates… All of the rules, 
equations, and parameters that governed the simulated tissue environments 
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and the cellular behaviors were derived a priori and unequivocally from the 
literature or from independent experimental observation. They were not 
altered by the CA simulation or any results generated by the simulation 
(Peirce, Van Gieson, and Skalak 2004). 

The experimenters take pains to insist that their microparameters were set 
“once and for all” before the simulation was run.1 

Similar reasoning underlies a more pessimistic reaction to validation. 
Oreskes et al. (1994) suggest that calibration generates illusory confidence in 
a simulation, and we must set our sights lower. Likewise, Kleindorfer et al. 
(1998) suggest that validation be replaced with establishing social credibility. 
Rykiel (1996) argues that validation criteria vary across contexts, and that 
primary use of validation is not confirmation, but a kind of pragmatic 
establishment of model credibility. 

But these are overreactions. Not only do modelers in fact develop models 
iteratively, using macrodata to tweak microparameters, but it is as easy to 
come up with cases where such tweaking is clearly fruitful. 

Consider, for example, the van der Waals equation for gases.2 The van 
der Waals equation, (P+n2a/V2)(V-nb)=nRT, introduces two parameters: the 
volume excluded by a mole of particles, and the attraction between the 
particles. Near the critical point, this equation is a substantial improvement 
over Boyle’s equation. 

Van der Waals introduced his revision to the ideal gas law in part in 
response to macro-measurements of departures of the behavior of certain 
gases from Boyle’s law under various conditions (van der Waals 1910). 
Though it is a macroscopic equation of state, however, his equation also 
provides a straightforward route for estimating the properties of individual 
particles. In the 19th century, it was of course impossible to measure the 
excluded volumes and interaction energies of particles directly. Calculations 

                                                 
1 Notice also the massive complexity of the simulation, with 48 free parameters per cell. 
As we will discuss below, such complexity introduces substantial risks. 
2 Our thanks to an anonymous reviewer of an earlier paper for suggesting this example. 
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of these parameters for different gases were thus made on the basis of 
experimental macro-measurements. Over time, other ways of estimating these 
parameters were developed. For instance, the mechanical measurements were 
triangulated with other macroproperties, such as polarizability and molar 
refractability. Still later, techniques were developed for estimating the 
parameters more directly, such as using X-ray crystallography to measure 
atomic spacing. All these later measurements together, of course, refined the 
values of the radii and interaction energies beyond those that could be 
inferred from the mechanical properties of gases alone.3 

This successful estimation of radii and interaction energies can be seen as 
an instance of iterative microparameter-tweaking. Suppose we began with a 
crude guess at the interaction energies and radii for a particular gas, and ran a 
simulation on that basis. From the mismatch of the output of that simulation 
with the empirical macrodata, we changed the parameters slightly, and re-ran 
the simulation. And so on, until we arrived at a good match. This numerical 
method, performed properly, would arrive at the same result as the analytic 
method of solving the equations for their parameters, given empirical 
measurements of P, V, and T. 

1.3 The moderate response: also an overreaction 

In response to this sort of case, and to the actual practice of modelers, a 
more moderate stance is often taken. The proposal is that a sharp separation 
be made between the data used for “calibrating” a model, and the data used 
for testing the model. Müller and von Storch (2004), for instance, regard 
calibration and validation as important steps in the construction of models, 
but argue that a Chinese Wall be erected between the data used for calibrating 
a model and that used for validating a model. They also insist that calibration 
be involved only in tweaking parameters, and should not be used for any 
other purpose, such as modifying functional forms or changing underlying 
mechanisms.  

                                                 
3 Cf. Bondi (1964)  
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This proposal, however, also misses the mark. Neither of the two 
prohibitions is justified. First, if the use of macrodata is acceptable for 
tweaking parameters, it may also be acceptable for modifying functional 
forms or mechanisms. Consider, for instance, the argument given by Bearman 
et al. (2004) for a hypothesis about relationship taboos among American 
adolescents. They observe that the network of romantic interactions in a 
particular high school closely resembles a chainlike spanning tree, with nearly 
a complete absence of short cycles. Using an agent-based model, they build 
evidence for hypotheses about the rules governing the interactions which 
generate that structure. In other words, they infer and modify the mechanisms 
of their simulation to match the observed macrostructure. 

Second, the “Chinese Wall” restriction is also too strong. Bearman et al., 
for instance, violate it, using macrodata both for the formulation and 
validation of their models. In more general contexts, a number of people have 
argued in recent years against the once-pervasive view that scientific 
hypotheses must be tested using only “novel evidence” (e.g., Glymour 
(1980), Worrall (2002), Hitchcock and Sober (2004), Mayo (2008)).  In 
connection with simulation in particular, we discuss this point in more detail 
in the next section. 

In the next two sections, we address predictive accuracy and 
microfoundationality, and in the final section we apply these issues to 
difficult cases. We argue that both are risks, and the use of macrodata in 
tweaking microparameters involves taking such risks. Moreover, we argue 
that there can be tradeoffs between the risk of compromising predictive 
accuracy and the risk of compromising microfoundationality. While 
macrodata should therefore be used judiciously, its proper use can enhance 
bottom-up models. 

2 From the perspective of statistical inference 

Comparing simulation tweaking to other kinds of inferences from data 
can help determine whether and when tweaking is good or bad. The 
consensus view is that tweaking is (almost) always a bad thing. One source of 
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this skepticism is the intuition that accommodation is epistemically inferior to 
novel prediction, and that tweaking is an extreme form of accommodation. 
On this view, tweaking involves a kind of guided manipulation of simulation 
parameters to generate better fit between the simulation outcomes and 
existing macrodata, and this manipulation compromises the accuracy of the 
simulation. A superior method of testing simulations involves somehow 
estimating or inferring parameter values independently, and then assessing fit 
between the simulation outcomes and new macrodata. While there is 
something to this intuition worth rescuing, it is often false (Hitchcock and 
Sober 2004). Investigating when and why it is false is informative, and is best 
done by looking at simulation tweaking through the lens of statistical 
inference. 

Maximum likelihood estimation (MLE) provides a one way to estimate 
the value of parameters that generate the best fit between model and data. 
MLE is common, effective, and epistemically viable. Of course, successful 
MLE requires a number of formal assumptions. In particular, basic MLE 
assumes that the data are the product of a random variable that obeys a known 
probability model but has an unknown exact distribution. The exact 
distribution is specified by the parameter values, which are being estimated 
from the data. Consider a simple example: tossing a coin with an unknown 
bias. We assume that coin tossing obeys a binomial model, and begin tossing 
to estimate a single parameter, the probability of coming up heads (P). Say we 
get heads 63 out of 100 tosses. The maximum likelihood estimate for the 
parameter is P=0.63. Based on the sample size we can estimate a confidence 
interval, and such intervals narrow as sample size is increased. Notice that the 
background probability model plays a crucial role in constraining the 
inference problem. Also notice that MLE uses all the data, and more data 
increases the precision of the estimate.4  

                                                 
4 The formal justification for MLE is well established and we gloss those details here; 
see, e.g., Sokal and Rolhf (1994) for biological applications, Royall (1997) on likelihood 
functions, or Burnham and Anderson (2002) for the MLE and model selection. 
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The inferential problem of estimating parameters for simulations of 
herring, traffic, or economies introduces a degree of complexity that makes 
the formal assumptions of statistical MLE problematic. The simulations used 
to model the behavior of these systems are far from the well-behaved 
probability models assumed by MLE, and often there is no clear way to get 
traction on what the family of distributions should be for estimating the 
numerous simulation parameters from the data. Estimating the bias of a coin 
assuming a binomial model is a far cry from tweaking herring evasion 
parameters to fit the macrolevel schooling patterns we actually see. Yet, 
following a suggestion made by Dawkins, Srinivasan, and Whalley (2001, 
3663-3664) there is a clear analogy between tweaking and statistical 
techniques for estimation, especially MLE—both procedures involve 
manipulating parameter values to increase the fit between what counts as the 
model (the simulation or the probability model) and the observations. The 
difference is that MLE, due to the strong formal assumptions, can use formal 
methods to infer the maximum likelihood estimate from the data whereas 
tweaking a simulation involves a step-by-step process of altering parameter 
values and evaluating fit between simulation outcomes and macrodata. This 
step-by-step process is necessary because of the increased complexity of the 
simulations. Thus, we can fruitfully view tweaking (tuning, calibrating) as the 
coarse-grained strategy for MLE with very complex models. 

2.1 The risk of overfitting 

This analogy casts doubt on the more extreme prohibitions against 
tweaking. Why think tweaking is such a bad thing? If it counts as coarse-
grained MLE then tweaking represents an innovative way to estimate 
parameter values for very complex models, not an undue epistemic risk. In 
fact, the analogy does show that a general prohibition against parameter 
tweaking is misguided. Fitting a model to data is an excellent way to produce 
an accurate model of some system. However, the general prohibition 
responds to a genuine epistemic worry, a worry also brought about by the 
tweaking-MLE analogy: the risk of overfitting the model to the data.  
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The risk of overfitting faces any MLE problem for models with multiple 
parameters. It is commonly discussed in terms of the curve-fitting problem. 
Given enough parameters, we can generate a curve that will fit all the data 
points in a scatter plot exactly. Such a curve may have the best fit, but it 
provides useless predictions. If our model has too many parameters then MLE 
will overfit the model, compromising predictive accuracy. Simulations are 
massively complex models with many parameters, and therefore face a 
severely increased risk of overfitting. 

Statisticians have developed tools to cope with the risk of overfitting for 
MLE: model selection statistics.5 The formal details are complex but the core 
idea is simple. Model selection statistics balance fit to data against the 
complexity of a model in order to rigorously compare the overall predictive 
accuracy of models of differing complexity (Burnham and Anderson 2002). 
The number of adjustable parameters determines the complexity of the model. 
Increasing the number of parameters, and thus increasing the complexity of 
the fitted model, incurs a penalty. Statistical model selection identifies the 
model that provides the best tradeoff between fit and complexity in order to 
maximize expected predictive accuracy. 

Statistical model selection cannot be applied without modification to 
assessing the predictive accuracy of complicated simulations, for simulation 
parameter tweaking is not the same as fitting a polynomial to a set of data. 
Yet, continuing the analogy between tweaking and MLE, model selection 
provides an important insight. Suppose we want to fit a microfoundational 
simulation to some macrodata. Consider one simulation with a large number 
of parameters. We can make this into a model selection problem by sorting 
the parameters into two groups: adjustable and fixed parameters. Start by 
treating all parameters as fixed. Then begin by tweaking one, then two, and so 
on. Any of the parameters are fair game for tweaking, but we decide how 

                                                 
5 In the philosophical literature AIC has received the most attention. See, for example, the 
argument by Forster and Sober (1994) that this model selection framework shows how 
simplicity matters in science. 
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many parameters should count as adjustable by deploying model selection 
considerations. The increased fit generated by tweaking another parameter 
must counterbalance the increase in complexity by allowing more parameters 
to be tweaked. Any tweaking of simulation parameters risks overfitting the 
simulation to the data, a risk that increases with the number of parameter we 
allow to be adjusted. Tweaking all the parameters of a very complex 
simulation to increase fit will almost certainly compromise the predictive 
accuracy of the simulation. But tweaking some parameters to increase fit is 
simply good scientific practice, for lack of fit to data compromises predictive 
accuracy just as well. So tweaking can be legitimate insofar as the risk of 
overfitting can be mitigated. 

2.2 When is tweaking viable? 

In sharp contrast to the statistician, the consensus among scientists who 
work with very complex simulations is that tweaking is an epistemically 
inferior way to determine parameter values (see, e.g., Randall and Wielicki 
1997). While these scientists often see tweaking in just the way described 
here as analogous to MLE, they claim that it should be avoided because it 
compromises a scientist’s ability to test their hypotheses about how the 
simulations represent the target systems. Tweaking insulates the simulation 
from disconfirmation.6 This is an endorsement of the tenacious intuition that 
accommodating a theory to existing data is problematic, and that novel 
predictions or tests provide a better source of epistemic support.  

Hitchcock and Sober (2004) use the model selection framework to 
explore accommodation versus prediction. Let us briefly discuss their 
example. They contrast two scientists, Penny the predictor and Annie the 
accommodator, who are trying to fit a polynomial function C to the data D. 
Penny uses a subset of D to fit her curve Cp, then uses it to accurately predict 

                                                 
6 “The problem with tuning is that it artificially prevents a model from producing a bad 
result” (Randall and Wielicki 1997, 404). Recall that they define tuning as “the practice 
of adjusting parameters after a model is run, to improve the agreement between the model 
results and data” (Randall and Wielicki 1997, 405). 
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the rest of the data in D, whereas Annie fits her curve Ca to the entire data set 
D. Is Cp better than Ca? There is no general answer because it depends on 
how Cp and Ca are inferred; in some cases Cp will be better, in some cases Ca 
will be better, and in other cases the choice will be irrelevant (Hitchcock and 
Sober 2004, 15-21). One case is particularly relevant to the views in the 
simulation literature. If both Penny and Annie guard against overfitting, so 
both use model selection to select the curve that maximizes the tradeoff 
between fit and complexity, then Annie’s Ca provides the best curve, for she 
uses all the data. Since Penny uses only a subset of the data then Cp can’t 
have a higher predictive accuracy than Ca (Hitchcock and Sober 2004, 17). 
Just as there is no general reason to prefer curves that make novel predictions 
to curves fitted using the entire data set, we should expect no general solution 
to the question of whether tweaking is legitimate.  

This moral reveals the flaw in the moderate solution to tweaking. Recall 
that the moderate solution involves partitioning the data into two sets, one 
used strictly for calibrating the simulation (i.e., tweaking the parameters to fit 
the simulation model to the data), and the other set used to test the fitted 
simulation model. While this heuristic does help guard against overfitting, it 
does so at the cost of underutilizing the data. Other strategies, such as model 
selection statistics, can guard against overfitting while utilizing all the data, as 
Hitchcock and Sober make clear. The cost of the “Chinese Wall” heuristic for 
calibration and testing decreases as the total amount of data increases. In 
machine learning a common technique uses algorithms to train models on a 
subset of data (called the training set), then measure the success of models 
applied to new data sets, but such techniques are only effective with very 
large data sets (Bishop 2006). Thus, it can be effective if we have sufficient 
data, but in all other cases it provides only a crude response to the problem of 
overfitting that makes inefficient use of available data. 

The same considerations also answer the misconceived skepticism 
towards calibration found in Oreskes et al. (1994). They argue that such 
procedures often involve further tweaking of the simulation when testing it 
against the second data set, and so do not provide any test or support of the 
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simulation model—the result is that “the so-called verification is a failure” 
(Oreskes et al. 1994, 643). Yet so long as we take sufficient steps to guard 
against overfitting, using all the data to tweak or fit a simulation does not 
result in failure, but is a step towards providing a predictively accurate 
simulation.  

Tweaking, like accommodation, is legitimate provided we guard 
sufficiently against the risk of overfitting. And tweaking utilizes the data to 
maximum effect. But how do we know we are not guilty of overfitting? The 
answer will depend crucially on the details. It is often observed that 
independent information about the underlying processes is beneficial for 
simulation construction. Our analysis clarifies one of the benefits: using 
independent information to constrain parameter values will always help 
mitigate the risk of overfitting. In our herring simulation, having independent 
information on the behavioral repertoire of individual herring will provide 
constraints to tweaking that guard against overfitting our simulation to the 
macrodata on predator evasion. Integrating background information into the 
simulation is crucial for this reason. 

Notice that the discussion in this section has focused on predictive 
accuracy, a feature of the simulation model that compares the output of the 
model to the data. Tweaking should be avoided if it overfits the model to the 
data. But we may have independent concerns about the effects of tweaking 
microparameters to increase the fit to macrodata. Such tweaking may 
compromise the interpretation of a putatively bottom-up simulation. We now 
turn to this issue. 

3 Microfoundations 

As our preposterous herring-simulation shows, blindly tweaking 
parameters can do violence not only to the predictive accuracy of a 
simulation, but also to whether it is “bottom-up.” In the second iteration, we 
tuned the psychologies of the individual herring to match the macrodata, so 
that half the agents were artificially set to be lefties and half to be righties. 
This was already a bad move, just from the perspective of maximizing 
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predictive accuracy. If, for instance, the lefties and righties change their 
relative positions, the macrobehavior collapses. But it also has a different 
problem. Tuning the model in this way smuggles the macroproperties of the 
school into the microproperties of the individual herring. The modeled 
“herring” are little more than encoded fragments of the school as a whole, 
rather than representations of individual actors. 

Some theorists may not consider this “smuggling” to be a defect. The 
instrumentalist, for instance, purports to be unconcerned about anything but 
predictive accuracy. Inasmuch as predictive accuracy is the goal, even a 
strictly macroscopic model may do a better job than any extant 
microfoundational model at fitting the data. A simple Taylor Rule, for 
instance, may do a better job modeling the relation between inflation and 
interest rates than a model of individual agents. Likewise, the van der Waals 
equation or some other macroscopic state equation may do a better job 
modeling the relation between temperature and pressure in a gas than a model 
in statistical mechanics. 

Predictive accuracy, however, is but one factor in model development and 
selection. There are a number of reasons one might want a model or 
simulation to be genuinely microfoundational, even at the expense of fit. 
Among the reasons are: 

Extrapolation: Despite the better fit of a macromodel to the data, there 
may be reason to be more confident in a microfounded model than a 
macromodel, when applied to new circumstances. In economics, for instance, 
Robert Lucas’s (1976) critique of structural macroeconomic models has led 
many people to favor microfoundational models. Lucas argues that 
macroeconomic models tend to fail when public policy changes, since the 
expectations and hence the choices of individual actors change in response to 
changes in policy. In place of structural models, he argued that 
macroeconomic models should be built on “deep parameters,” such as the 
tastes and technology of individual actors, which he claims are policy 
invariant. 
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Descendent simulations: Simulations are not one-shot affairs. A 
microfoundational model may be preferred not because we expect that early 
models will be predictively superior to macromodels, but because we have 
reason to suspect that they lay better foundations for the long-term 
development of models. 

Modularity: Microfoundational simulations may also be more conducive 
to modular construction. There are many reasons modularity may be 
desirable. Models do not stand on their own, but rather parts of models get 
incorporated into other models. There are advantages to conforming to a 
common ontology, reusing model-parts that others have built, and 
repurposing parts of a simulation in other simulations. There are also practical 
considerations, including scalability, design and engineering considerations, 
and so on. These often take strong precedence over the optimization of a 
particular model. 

Explanatory value: Microfoundational models are widely regarded as 
explanatorily superior to macromodels. In general, this is not justified, as 
critiques of mid-century views on explanation have made clear. However, 
more considered perspectives still leave room for the explanatory privilege of 
microfoundational models, at least for certain purposes. Kincaid (1986), for 
instance, gives a measured defense of “individualistic” explanations in the 
social sciences. Similar motivations seem to drive recent arguments for 
mechanism-based explanations, as in Machamer et al. (2000). 

Insights into microentities: It is often a central goal of models to gain 
insights into the properties of the microentities generating a 
macrophenomenon, apart from modeling the macrophenomenon. Equally, in 
simulations we often seek to gain understanding of patterns of aggregation. It 
is not only the macroresults that are of interest, nor the microentities that 
interact with one another, but how the macroresults are produced from the 
interactions. 

3.1 How can tweaking take a toll on microfoundationality? 

It is a puzzle how tweaking the parameters of a simulation could possibly 
have an effect on whether the simulation is microfoundational. The following 
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seems like a plausible picture of simulations. A modeler chooses a set of 
entities to represent with elements or components of a simulation. Each of 
those entities is structurally described in the components of the simulation, 
assigning them attributes, behaviors, and so on. Initial conditions are set, and 
then the simulation is set off and running. For the simulation to be 
microfoundational, then, seems to be a matter of modeling a 
macrophenomenon by choosing to represent entities from some base on 
which the macrophenomenon supervenes (where the base is understood to 
exclude macroentities). 

In this picture, what we might call the “modeled ontology” of a 
simulation is fixed by the modeler independently of how the microentities are 
represented. Changes to the representation, and in particular, tweaks to 
attributes or parameters, have no effect on which entities are modeled. 
Tweaking parameters would seem unable to make any difference at all in 
which entities the components of a simulation represent. And hence would 
seem unable to make a difference as to whether the simulation is 
microfoundational. 

Our tweaked herring simulation, however, was supposed to show at least 
in principle that tweaking parameters may indeed have an effect on whether a 
simulation is microfoundational.  The suggestion was that in the course of 
tweaking the parameters of the model, the macroentities were “smuggled 
into” the simulation. 

The idea is that whether or not the modeler intends it, macroentities may 
nonentheless sneak into what the simulation represents. In the herring case, 
the modeler intends to represent herring psychology, dividing the dispositions 
of the herring into “lefties” and “righties.” But despite what the modeler 
wants, there may be factors outside those intentions that determine what the 
components of the simulation represent. The fact that the herring-components 
were tuned, the way they were, to match the macrodata, makes those 
components represent something other than the intended interpretation of the 
modeler. 
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The herring case is a caricatured one. But there are real-world cases in 
which this is a real issue, of importance to modeling methodology. 

Consider, for instance, “representative agent” models in economics. 
These models seek to balance analytic tractability with a desire to model 
macroeconomic phenomena in terms of their microfoundations. Because it is 
generally impossible to give closed-form solutions to models that include 
heterogeneous sets of individuals, these models treat the choices of a diverse 
set of agents as the choices of one “representative” individual whose choices 
are the same as the aggregate choices of the population as a whole. 

Despite how widely these models are employed in contemporary 
macroeconomics, a number of people have criticized their basic assumptions. 
Kirman (1992, 118), for instance, points out that there is no reason to expect 
an aggregate of individual agents to act itself as a collective maximizer, even 
if those agents are maximizers and even if they have identical preferences. 
This threatens to gut the ability of a representative agent model to guide 
policy. 

Hoover (2006) has gone on to deny that these models should even be 
considered properly microfoundational at all. The representative agent, he 
argues, is similar to Quetelet’s “average man,” with 2.3 children and living in 
one property that is partly wholly rented, partly wholly owned, and partly on 
the streets. Neither the “average man” nor the representative agent is really an 
agent at all. Rather, “the representative agent is nothing else but an aggregate 
in microeconomic drag.” (Hoover 2006, 146) 

If Hoover’s diagnosis is correct, a modeler may fully intend a model to be 
microfoundational and yet, depending on the basis for constructing the model, 
it may in fact be a macromodel “in drag.” The same can be extended to 
simulations: despite the modeler’s intention to refer to an element of the 
supervenience base, facts about how the simulation is constructed may trump 
those intentions. 

Once we notice this problem, it becomes clear that it is potentially 
rampant in simulations. When dealing with putatively microfoundational 
simulations, it is easy to smuggle in macroproperties. Unfortunately, even 
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some of the heuristics we might use to reduce the risk of overfitting end up 
increasing the threat that microfoundationality will be compromised. 

Consider, for instance, TRANSIMS, a large-scale system for simulating 
the movement of people around a city, on foot and in cars and in public 
transportation. (Barrett et al. 2000, Cetin et al. 2002, Eubank et al. 2004) 
Among the many parts of the model is a “traffic microsimulator,” which 
simulates the flow of cars on the network of streets in a city, as they follow 
routes toward destinations, change lanes, and enter and exit parking spaces. 
The microsimulator is implemented as a cellular automaton, with the streets 
treated as long thin grids of car-sized cells, and cars jumping from cell to cell 
as they move through the streets. 

In the simulation, the actual dynamics of movement from cell to cell are 
neglected. But suppose we wanted to add some of this texture to the 
TRANSIMS model. One option is to add a large number of parameters, 
representing many characteristics of the road. This, however, can seriously 
increase the risk of overfitting. A different response is to introduce a single 
parameter, representing the key factor or factors affecting cell-to-cell 
dynamics. The problem is that as we tweak such a factor, we risk finding 
ourselves in the shoes of the herring-modeler or of the representative-agent 
theorist, encoding the macrodata in “microfoundational drag.” Having chosen 
a single parameter to modify, in order to mitigate the risk of overfitting, we 
risk losing control over what that parameter represents. 

3.2 Guarding against smuggling 

Treatments of the “tuning” of simulations, we argued above, tend to draw 
too simple a line between acceptable and unacceptable procedures for 
tweaking. Among the errors is that too much is often made of the distinction 
between accommodation and prediction. Here there is a different moral. 

If we are to guard against overfitting, all the data is just data. But if we 
are to guard against the risk of compromising microfoundations, we need to 
treat microdata and macrodata somewhat differently. A different set of tests is 
called for, beyond those that evaluate predictive accuracy. Independent of the 
question of comparing simulations from the perspective of predictive 
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accuracy, we should test for the effect of tweaking on what we might call the 
“representational integrity” of the simulation. 

A good deal of testing for representational integrity is already performed, 
implicitly if not explicitly, by modelers in actual situations. One feature that 
can be straightforward to test is a simulation’s modularity. This may be 
performed either by testing subparts of a simulation on their own, or else by 
swapping parts of a simulation into a different simulation of a 
macrophenomenon. 

It is misleading to collapse all the microdata and macrodata together, 
without distinguishing the different testing goals they are to serve. It is easy 
to overlook the fact that we may have two different kinds of reasons for 
wanting a simulation to be microfoundational. One is to enhance the 
simulation’s predictive success about macrophenomena.7 But as we 
mentioned, there are many other reasons we might want a simulation to be 
microfoundational, apart from improving a simulation’s predictive success 
about macrobehavior. These may be minor considerations or substantial ones, 
and we suggest it is better to consider them separately rather than simply 
incorporating micro-constraints into one data set. 

Modularity is just one among a variety of features by which the 
“representational integrity” of a simulation can be tested. The notion of 
microfoundationality is a complicated one, and it is not clear that even if a 
simulation fails to be thoroughly modular, it invariably fails to be 
microfoundational. For instance, one might defend a representative agent 
simulation that fails to be modular as still being microfoundational, on the 

                                                 
7 Even this important role for microfoundationality sometimes goes unrecognized. For 
instance, the view of Friedman (1953) that the only goal of a science is its predictive 
success and that the “realism” of the assumptions involved in generating those 
predictions is unimportant, remains influential. Those who dispute this claim often follow 
the lines of Hausman (1992), which appeal to the contribution of “realistic assumptions” 
to a model’s predictive success about macrobehavior. Interestingly, even what Hausman 
calls “wide predictive success” appears to be focused on the macro-predictions, rather 
than both the macro- and micro-predictions. 
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basis that it is a good idealization of agents relative to a particular 
macroeonomic problem (cf. Woodford (2006)). Similarly, Satz and Ferejohn 
(1994) defend rational choice theory as an individualistic methodology in 
social theory despite the failure of rationality assumptions when applied on an 
individual basis. 

Furthermore, there are tests for the “representational integrity” of a 
simulation that do not require modularity. For instance, in the sexual behavior 
paper, inferences are drawn about the relationship patterns among adolescents 
in light of the macrostructure of the graph of their interactions. The 
macrostructure of the graph provides good evidence that a behavioral 
constraint holds at the individual level. Such evidence may preempt the need 
for testing at the individual level. 

In short, with the iterative tweaking of simulations, there is a real risk that 
simulation parameters become artifacts of the macrosystem, rather than 
genuinely microfoundational. While it is difficult to characterize precisely 
when such smuggling of macrodata occurs, we may nonetheless test for the 
features normally exhibited by microfoundational models, and develop 
strategies for improving microfoundationality as an independent goal. 

4 Conclusion 

We have restricted our discussion to simulation and to tweaking, though 
to some extent the results can be extended to broader classes of models and to 
other processes for model-improvement. 

Tweaking parameters is both common and useful. It is unnecessary to 
adhere to the strict code that many worried methodologists put forward, i.e., 
that macrodata must be isolated in one way or another from the iterated 
improvement of a simulation. That code is probably impossible to follow 
anyway, inasmuch as the macrodata affects model iterations, even at the level 
of the selection of basic structures to be included in a simulation. The 
iterative process of model development can stretch over the course of a 
researcher’s career, and indeed passes on from researcher to researcher in the 
modeling community. It is a good thing that the strict codes are misguided, 
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because to follow them would hamstring the practice of modeling. We come 
to praise tweaking, not to bury it. 

That does not mean, however, that tweaking is risk free. One of the 
devilish problems of tweaking is that addressing the risks respectively 
involves conflicting recommendations. The simplifications that mitigate the 
risk of overfitting, such as treating a heterogeneous population of agents as 
one single representative agent, may be the very thing that compromises the 
microfoundationality of a simulation. 
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